Perkalian Vektor, Artikel ini meliputi Contoh Perkalian titik, Operasi Perkalian silang, Perkalian langsung, perkalian bersifat komutatif dan Pengertian nya.
Perkalian vektor Ialah operasi perkalian dengan 2 operand (obyek yang akan dikalikan) "berupa vektor".
Perkalian Vektor Terdapat 3 jenis perkalian vektor, yaitu perkalian titik, perkalian silang, serta perkalian langsung.
Perkalian titik adalah dua buah vektor yang akan menghasilkan sebuah skalar.
Jenis perkalian yang ini bersifat komutatif.
Untuk vektor satuan terdapat hubungan yang khusus dalam operasi perkalian titiknya, yang merupakan sifat yang digunakan dalam perkalian titik, yaitu
Perkalian silang Hasil suatu perkalian silang 2 buah vektor adalah juga sebuah vektor. Perkalian silang bersifat tidak komutatif.
Perkalian langsung
Hasil perkalian langsung 2 buah vektor adalah sebuah tensor atau matriks. Perkalian ini tidak bersifat komutatif.
Sekian artikel dari file education tentang Perkalian Vektor.
Setelah sebelumnya membahas Penjumlahan Vektor Dengan Metode Grafis dan Analisis dan Penjumlahan Vektor
Perkalian vektor Ialah operasi perkalian dengan 2 operand (obyek yang akan dikalikan) "berupa vektor".
Perkalian Vektor Terdapat 3 jenis perkalian vektor, yaitu perkalian titik, perkalian silang, serta perkalian langsung.
Perkalian titik adalah dua buah vektor yang akan menghasilkan sebuah skalar.
Jenis perkalian yang ini bersifat komutatif.
Untuk vektor satuan terdapat hubungan yang khusus dalam operasi perkalian titiknya, yang merupakan sifat yang digunakan dalam perkalian titik, yaitu
Perkalian silang Hasil suatu perkalian silang 2 buah vektor adalah juga sebuah vektor. Perkalian silang bersifat tidak komutatif.
Perkalian langsung
Hasil perkalian langsung 2 buah vektor adalah sebuah tensor atau matriks. Perkalian ini tidak bersifat komutatif.
Sekian artikel dari file education tentang Perkalian Vektor.
0 Response to "Perkalian Vektor"
Post a Comment